Sulfur-oxidizing symbionts without canonical genes for autotrophic CO2fixation

Author:

Seah Brandon K. B.ORCID,Antony Chakkiath PaulORCID,Huettel BrunoORCID,Zarzycki JanORCID,Borzyskowski Lennart Schada vonORCID,Erb Tobias J.ORCID,Kouris AngelaORCID,Kleiner ManuelORCID,Liebeke ManuelORCID,Dubilier NicoleORCID,Gruber-Vodicka Harald R.ORCID

Abstract

AbstractSince the discovery of symbioses between sulfur-oxidizing (thiotrophic) bacteria and invertebrates at hydrothermal vents over 40 years ago, it has been assumed that autotrophic fixation of CO2by the symbionts drives these nutritional associations. In this study, we investigatedCandidatusKentron, the clade of symbionts hosted byKentrophoros, a diverse genus of ciliates which are found in marine coastal sediments around the world. Despite being the main food source for their hosts, Kentron lack the key canonical genes for any of the known pathways for autotrophic fixation, and have a carbon stable isotope fingerprint unlike other thiotrophic symbionts from similar habitats. Our genomic and transcriptomic analyses instead found metabolic features consistent with growth on organic carbon, especially organic and amino acids, for which they have abundant uptake transporters. All known thiotrophic symbionts have converged on using reduced sulfur to generate energy lithotrophically, but they are diverse in their carbon sources. Some clades are obligate autotrophs, while many are mixotrophs that can supplement autotrophic carbon fixation with heterotrophic capabilities similar to those in Kentron. We have shown that Kentron are the only thiotrophic symbionts that appear to be entirely heterotrophic, unlike all other thiotrophic symbionts studied to date, which possess either the Calvin-Benson-Bassham or reverse tricarboxylic acid cycles for autotrophy.Significance StatementMany animals and protists depend on symbiotic sulfur-oxidizing bacteria as their main food source. These bacteria use energy from oxidizing inorganic sulfur compounds to make biomass autotrophically from CO2, serving as primary producers for their hosts. Here we describe apparently non-autotrophic sulfur symbionts called Kentron, associated with marine ciliates. They lack genes for known autotrophic pathways, and have a carbon stable isotope fingerprint heavier than other symbionts from similar habitats. Instead they have the potential to oxidize sulfur to fuel the uptake of organic compounds for heterotrophic growth, a metabolic mode called chemolithoheterotrophy that is not found in other symbioses. Although several symbionts have heterotrophic features to supplement primary production, in Kentron they appear to supplant it entirely.

Publisher

Cold Spring Harbor Laboratory

Reference101 articles.

1. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis

2. Chemosynthetic endosymbioses: adaptations to oxic–anoxic interfaces

3. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use

4. Nitrogen fixation in a chemoautotrophic lucinid symbiosis;Nat Microbiol,2016

5. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation;Nat Microbiol,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3