Fermentation characteristics of mead and wine generated by yeasts isolated from beehives of two Austrian regions

Author:

Gangl Helmut,Lopandic Ksenija,Tscheik Gabriele,Mandl Stefan,Leitner Gerhard,Wechselberger Katharina,Batusic Maria,Tiefenbrunner Wolfgang

Abstract

AbstractMead is a traditional alcoholic beverage that is produced by fermentation of diluted honey. The mead quality is primarily influenced by the honey variety, although the yeast microflora as the main catalyst of alcoholic fermentation also plays a significant role in the organoleptic and chemical quality of the final product. The impact of the indigenous honey associated-yeasts on the mead properties has scarcely been investigated. To fill this gap the main objective of this work was to assess the metabolic properties of the yeasts isolated from honey and pollen from beehives of northeast Austria.The biodiversity was low and only two yeast species were identified, Zygosaccharomyces rouxii and Candida apicola. The fermentation potentials of these yeasts were estimated in two media, grape juice (since yeasts isolated from honey may be useful for sweet wine production) and diluted honey of similar sugar concentration, and compared with those of the reference strains Saccharomyces cerevisiae; S. uvarum and S. eubayanus. Depending on the fermentation substrate, yeasts differed with respect to their metabolic power, fermentation rate, sugar utilization and production of glycerol and organic acids. During mead fermentation Saccharomyces species showed the highest metabolic turnover, while the fermentation rate did not differ significantly. Addition of assimilable nitrogen to the diluted honey enhanced fermentation rate of S. cerevisiae, but not of the other species. Fermentation of grape juice occurred much faster than that of diluted honey and differences between yeasts were more pronounced. The S. cerevisiae commercial wine strain, adapted to high alcohol concentrations, and S. eubayanus outperformed the others, S. uvarum was comparable with Z. rouxii, while C. apicola had the lowest fermentation rate. Fructophily of Z. rouxii and to a lesser degree of C. apicola was observed in both media. An increased production of glycerol was achieved by S. eubayanus in both media and by C. apicola during the fermentation of honey must. A commercial S. cerevisiae strain, S. eubayanus and Z. rouxii were able to metabolize malic acid in wine. In mead, the S. eubayanus and S. uvarum yeasts showed the tendency of increasing the level of malic acid. Aroma profile depended profoundly on yeast species. This study demonstrates that the composition and complexity of the fermentation substrate determines the activity and the final metabolic outcomes of the studied yeasts.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. ALVA-Methodenbuch für Weinanalysen in Österreich, Bundesministerium für Land- und Forstwirtschaft, 1984.

2. Fsy1, the sole hexose-proton transporter characterized in Saccharomyces yeasts, exhibits a variable fructose: H+ stoichiometry;Biochim Biophis Acta,2013

3. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrids;Int J Food Microbiol,2009

4. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues;Scientific Reports,2016

5. The glucose-dependent transport of l-malate in Zygosaccharomyces bailii

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3