Beyond accuracy: Measures for assessing machine learning models, pitfalls and guidelines

Author:

Dinga Richard,Penninx Brenda W.J.H.,Veltman Dick J.,Schmaal Lianne,Marquand Andre F.

Abstract

AbstractPattern recognition predictive models have become an important tool for analysis of neuroimaging data and answering important questions from clinical and cognitive neuroscience. Regardless of the application, the most commonly used method to quantify model performance is to calculate prediction accuracy, i.e. the proportion of correctly classified samples. While simple and intuitive, other performance measures are often more appropriate with respect to many common goals of neuroimaging pattern recognition studies. In this paper, we will review alternative performance measures and focus on their interpretation and practical aspects of model evaluation. Specifically, we will focus on 4 families of performance measures: 1) categorical performance measures such as accuracy, 2) rank based performance measures such as the area under the curve, 3) probabilistic performance measures based on quadratic error such as Brier score, and 4) probabilistic performance measures based on information criteria such as logarithmic score. We will examine their statistical properties in various settings using simulated data and real neuroimaging data derived from public datasets. Results showed that accuracy had the worst performance with respect to statistical power, detecting model improvement, selecting informative features and reliability of results. Therefore in most cases, it should not be used to make statistical inference about model performance. Accuracy should also be avoided for evaluating utility of clinical models, because it does not take into account clinically relevant information, such as relative cost of false-positive and false-negative misclassification or calibration of probabilistic predictions. We recommend alternative evaluation criteria with respect to the goals of a specific machine learning model.

Publisher

Cold Spring Harbor Laboratory

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3