Precise levels of Nectin-3 and an interaction with Afadin are required for proper synapse formation in postnatal visual cortex

Author:

Tomorsky JohannaORCID,Parker Philip R. L.ORCID,Doe Chris Q.ORCID,Niell Cristopher M.ORCID

Abstract

AbstractBackgroundDeveloping cortical neurons express a tightly choreographed sequence of cytoskeletal and transmembrane proteins to form and strengthen specific synaptic connections during circuit formation. Nectin-3 is a cell-adhesion molecule with previously described roles in synapse formation and maintenance. This protein and its binding partner, Nectin-1, are selectively expressed in upper-layer neurons of mouse visual cortex, but their role in the development of cortical circuits is unknown.MethodsHere we block Nectin-3 expression (via shRNA) or overexpress Nectin-3 in developing layer 2/3 visual cortical neurons using in utero electroporation. We then assay dendritic spine densities at three developmental time points: eye opening (postnatal day (P)14), one week following eye opening after a period of heightened synaptogenesis (P21), and at the close of the critical period for ocular dominance plasticity (P35).ResultsKnockdown of Nectin-3 beginning at E15.5 or ∼P19 increased dendritic spine densities at P21 or P35, respectively. Conversely, overexpressing full length Nectin-3 at E15.5 led to decreased dendritic spine densities when all ages were considered together. Interestingly, an even greater decrease in dendritic spine densities, particularly at P21, was observed when we overexpressed Nectin-3 lacking its Afadin binding domain, indicating Afadin may facilitate spine morphogenesis after eye opening.ConclusionThese data collectively suggest that the proper levels of Nectin-3, as well as the interaction of Nectin-3 with Afadin, facilitate normal synapse formation after eye opening in layer 2/3 visual cortical neurons.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3