Open source computational simulation for a moth-inspired navigation algorithm

Author:

Benelli Noam,Gurka RoiORCID,Golov YiftachORCID,Harari Ally,Zilman Gregory,Liberzon AlexORCID

Abstract

AbstractOlfactory navigation in insects, for instance when males search for mates, is a navigational problem of a self-propelled agent with limited sensor capabilities in a scalar field (odor) convected and diffused by turbulent wind. There are numerous navigation strategies proposed to explain the navigation paths of insects to food (flowers) or mating partners (females). In a search for a mate, the males use airborne pheromone puffs in turbulent environments around trees and vegetation. It is difficult to compare the various strategies because of a lack of a single simulation framework that can change a single parameter in time and test all the strategies against a controlled environment. This work aims at closing this gap, suggesting an open source, freely accessible simulation framework, abbreviated MothPy. We implement the simulation framework using another open source package (“pompy”) that recreates a state-of-the-art puff-based odor plume model of Farrell et al. [1]. We add four different navigation strategies to the simulation framework based on and extending the previously published models [2, 3], and compare their performance with different wind and odor spread parameters. We test a sensitivity analysis of the navigation strategies to the plume meandering and to increased turbulence levels that are effectively expressed as the elevated puff spread rates. The simulations are compared statistically and provide an interesting view on the robustness and effectiveness of various strategies. This benchmarking-ready simulation framework could be useful for the biology-oriented, as well as engineering-oriented studies, assisting to deduce the evolutionary efficient strategies and improving self-propelled autonomous systems in complex environments.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. Filament-Based Atmospheric Dispersion Model to Achieve Short Time-Scale Structure of Odor Plumes;Environmental Fluid Mechanics,2002

2. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects

3. Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source;PLoS One,2017

4. Pheromone puff trajectory and upwind flight of male gypsy moths in a forest

5. Odour movement, wind direction, and the problem of host-finding by tsetse flies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3