Author:
Lin Hai,Hargreaves Katherine A.,Li Rudong,Reiter Jill L.,Mort Matthew,Cooper David N.,Zhou Yaoqi,Eadon Michael T.,Dolan M. Eileen,Ipe Joseph,Skaar Todd,Liu Yunlong
Abstract
AbstractA large number of single nucleotide variants (SNVs) in the human genome are known to be responsible for inherited disease. An even larger number of SNVs, particularly those located in introns, have yet to be investigated for their pathogenic potential. Using known pathogenic and neutral intronic SNVs (iSNVs), we developed the regSNPs-intron algorithm based on a random forest classifier that integrates RNA splicing, protein structure and evolutionary conservation features. regSNPs-intron showed high accuracy in computing disease-causing probabilities of iSNVs. Using a high-throughput functional reporter assay called ASSET-seq (ASsay for Splicing using ExonTrap and sequencing), we validated regSNPs-intron predictions by measuring the impact of iSNVs on splicing outcome. Together, regSNPs-intron and ASSET-seq enable effective prioritization of iSNVs for disease pathogenesis. regSNPs-intron is available at https://regsnps-intron.ccbb.iupui.edu.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献