Abstract
AbstractStatistical and machine learning approaches predict drug-to-target relationships from 2D small-molecule topology patterns. One might expect 3D information to improve these calculations. Here we apply the logic of the Extended Connectivity FingerPrint (ECFP) to develop a rapid, alignment-invariant 3D representation of molecular conformers, the Extended Three-Dimensional FingerPrint (E3FP). By integrating E3FP with the Similarity Ensemble Approach (SEA), we achieve higher precision-recall performance relative to SEA with ECFP on ChEMBL20, and equivalent receiver operating characteristic performance. We identify classes of molecules for which E3FP is a better predictor of similarity in bioactivity than is ECFP. Finally, we report novel drug-to-target binding predictions inaccessible by 2D fingerprints and confirm three of them experimentally with ligand efficiencies from 0.442 - 0.637 kcal/mol/heavy atom.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献