Author:
Bhatnagar Srijak,Cowley Elise S.,Kopf Sebastian H.,Castro Sherlynette Pérez,Kearney Sean,Dawson Scott C.,Hanselmann Kurt,Ruff S. Emil
Abstract
AbstractPhototrophic microbial mats commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. Here we show that similar coexistence patterns and ecological niches can occur in suspended phototrophic blooms of an organic-rich estuary. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophicCyanobacteria, the middle and lower parts were dominated by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We found multiple uncultured phototrophic lineages and present metagenome-assembled genomes of two uncultured organisms within theChlorobiales. Apparently, thoseChlorobialespopulations were affected byMicroviridaeviruses. We suggest a sulfur cycle within the bloom in which elemental sulfur produced by phototrophs is reduced to sulfide byDesulfuromonas sp. These findings improve our understanding of the ecology and ecophysiology of phototrophic blooms and their impact on biogeochemical cycles.
Publisher
Cold Spring Harbor Laboratory