Entropic regulation of dynamical metabolic processes

Author:

Adler Stephan O.,Klipp EddaORCID

Abstract

AbstractLife depends on the input of energy, either directly provided by sunlight or in form of high-energy matter. The rules and conditions for the conversion of chemical or electromagnetic energy into living structure and all the processes related with life are governed by the laws of thermodynamics. Hence, to understand the potential and the limitations of cell growth and metabolism, it is unavoidable to take these laws into account. During the last years, systems biology has developed many mathematical models aiming to describe steady states and dynamic behavior of cellular processes in qualitative and quantitative terms. The validity of the model predictions depends strongly on whether the model formulation is in agreement with the laws of physics, chemistry, and, specifically, thermodynamics.Here, we review basic principles of thermodynamics for equilibrium and non-equilibrium processes as well as for closed and open systems as far as they concern metabolic processes, especially in their dynamics. We illustrate the application of thermodynamic laws for some practical cases that are currently intensively studied in systems and computational biology. Specifically, we will discuss the concept of entropy production and energy dissipation for isolated and open systems and its interpretation for the feasibility of biological processes, especially metabolism. We demonstrate that steady states of metabolic systems cannot show energy dissipation, while in dynamical modes entropy of the system can be both increased or decreased, depending on the type of perturbation and the kinetics of the reaction system. These findings are very important for biotechnological processes where energy dissipation should be limited, but also for analysis of healthy and diseased cellular metabolism.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3