E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex

Author:

Rayman Joseph B.,Takahashi Yasuhiko,Indjeian Vahan B.,Dannenberg Jan-Hermen,Catchpole Steven,Watson Roger J.,te Riele Hein,Dynlacht Brian David

Abstract

Despite biochemical and genetic data suggesting that E2F and pRB (pocket protein) families regulate transcription via chromatin-modifying factors, the precise mechanisms underlying gene regulation by these protein families have not yet been defined in a physiological setting. In this study, we have investigated promoter occupancy in wild-type and pocket protein-deficient primary cells. We show that corepressor complexes consisting of histone deacetylase (HDAC1) and mSin3B were specifically recruited to endogenous E2F-regulated promoters in quiescent cells. These complexes dissociated from promoters once cells reached late G1, coincident with gene activation. Interestingly, recruitment of HDAC1 complexes to promoters depended absolutely on p107 and p130, and required an intact E2F-binding site. In contrast, mSin3B recruitment to certain promoters did not require p107 or p130, suggesting that recruitment of this corepressor can occur via E2F-dependent and -independent mechanisms. Remarkably, loss of pRB had no effect on HDAC1 or mSin3B recruitment. p107/p130 deficiency triggered a dramatic loss of E2F4 nuclear localization as well as transcriptional derepression, which is suggested by nucleosome mapping studies to be the result of localized hyperacetylation of nucleosomes proximal to E2F-binding sites. Taken together, these findings show that p130 escorts E2F4 into the nucleus and, together with corepressor complexes that contain mSin3B and/or HDAC1, directly represses transcription from target genes as cells withdraw from the cell cycle.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3