Activation of an intron enhancer within the keratin 18 gene by expression of c-fos and c-jun in undifferentiated F9 embryonal carcinoma cells.

Author:

Oshima R G,Abrams L,Kulesh D

Abstract

The mouse forms of human keratins 18 and 8 (K18 and K8) are the first members of the large intermediate filament gene family to be expressed during embryogenesis. To identify potential regulatory elements of the human K18 gene, various recombinant constructions were expressed in cultured cells. An enhancer element was found in the first intron that functions on both the K18 and thymidine kinase promoters in differentiated cells. In F9 embryonal carcinoma cells, the level of expression was low in the presence or absence of the first intron. Cotransfection of F9 cells with K18 constructs that include the first intron and increasing amounts of an expression vector of c-jun results in a modest increase in the reporter gene expression. Cotransfection of the same construct with increasing amount of the mouse c-fos gene results in activation of the reporter gene by as much as 15-fold, with a near linear response to the amount of c-fos gene added. Site-specific mutagenesis of a putative AP-1 site within the intron abolishes trans-activation by c-fos in F9 cells. Furthermore, induction of c-fos in a derivative of F9 cells results in increased expression of the endogenous mouse form of K18. Cotransfection with c-jun or c-fos expression vectors had little effect on the expression of the K18 reporter construct in a parietal endodermal cell line already expressing the endogenous mouse gene. These results identify an enhancer within the first intron of K18 that may interact directly with c-jun and c-fos via a conserved AP-1-binding site. K18 expression in undifferentiated F9 cells may be limited by the low levels of c-jun and c-fos.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3