The plasma membrane as a competitive inhibitor and positive allosteric modulator of KRas4B signaling

Author:

Neale C.,García A.E.

Abstract

AbstractMutant Ras proteins are important drivers of human cancers, yet no approved drugs act directly on this difficult target. Over the last decade, the idea has emerged that oncogenic signaling can be diminished by molecules that drive Ras into orientations in which effector binding interfaces are occluded by the cell membrane. To support this approach to drug discovery, we characterize the orientational preferences of membrane-bound K-Ras4B in 1.45 milliseconds aggregate time of atomistic molecular dynamics simulations. Individual simulations probe active or inactive states of Ras on membranes with or without anionic lipids. We find that the membrane orientation of Ras is relatively insensitive to its bound guanine nucleotide and activation state but depends strongly on interactions with anionic phosphatidylserine lipids. These lipids slow Ras’ translational and orientational diffusion and promote a discrete population in which small changes in orientation control Ras’ competence to bind multiple regulator and effector proteins. Our results suggest that compound-directed conversion of constitutively active mutant Ras into functionally inactive forms may be accessible via subtle perturbations of Ras’ orientational preferences at the membrane surface.Statement of SignificanceMutations that lock Ras proteins in active states can undermine cellular decision making and drive cancer. Because there are no drugs to deactivate Ras, we use simulations to relate Ras’ three-dimensional orientation at the membrane surface to its signaling competence. Data shows that Ras reorientation is generally rapid, but can be trapped in one of three states by membrane adhesion of the globular signaling domain. One of these states is stabilized by negatively charged lipids and brings an effector binding interface toward the membrane surface, potentially obstructing protein-protein interactions required for propagation of the growth signal. Rare events drive a second type of membrane-based signaling obstruction that correlate with configurational changes in Ras’ globular domain, yielding a potential drug target.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3