Abstract
AbstractKinetochores are multiprotein machines that drive chromosome segregation in all eukaryotes by maintaining persistent, load-bearing linkages between the chromosomes and the tips of dynamic spindle microtubules. Kinetochores in commonly studied eukaryotes are assembled from widely conserved components like the Ndc80 complex that directly binds microtubules. However, in evolutionarily-divergent kinetoplastid species such as Trypanosoma brucei, which causes sleeping sickness, the kinetochores assemble from a unique set of proteins lacking homology to any known microtubule-binding domains. Here we show that a kinetochore protein from T. brucei called KKT4 binds directly to microtubules, diffuses along the microtubule lattice, and tracks with disassembling microtubule tips. The protein localizes both to kinetochores and to spindle microtubules in vivo, and its depletion causes defects in chromosome segregation. We define a minimal microtubule-binding domain within KKT4 and identify several charged residues important for its microtubule-binding activity. Laser trapping experiments show that KKT4 can maintain load-bearing attachments to both growing and shortening microtubule tips. Thus, despite its lack of similarity to other known microtubule-binding proteins, KKT4 has key functions required for harnessing microtubule dynamics to drive chromosome segregation. We propose that it represents a primary element of the kinetochore-microtubule interface in kinetoplastids.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献