NF-κB signaling regulates the formation of proliferating Müller glia-derived progenitor cells in the avian retina

Author:

Palazzo Isabella,Deistler Kyle,Hoang Thanh V.,Blackshaw SethORCID,Fischer Andy J.ORCID

Abstract

AbstractNeuronal regeneration in the retina is a robust, effective process in some cold-blooded vertebrates, but this process is ineffective in warm-blooded vertebrates. Understanding the mechanisms and cell-signaling pathways that restrict the reprogramming of Müller glia into proliferating neurogenic progenitors is key to harnessing the regenerative potential of the retina. Inflammation and reactive microglia are known to influence the formation of Müller glia-derived progenitor cells (MGPCs), but the mechanisms underlying this response are unknown. Using the chick retina in vivo as a model system, we investigate the role of the Nuclear Factor kappa B (NF-κB) signaling, a critical regulator of inflammation. We find that components of the NF-κB pathway are expressed by Müller glia and are dynamically regulated after neuronal damage or treatment with growth factors. Inhibition of NF-κB enhances, whereas activation suppresses the formation of proliferating MGPCs. Additionally, activation of NF-κB promotes glial differentiation from MGPCs in damaged retinas. With microglia ablated, the effects of NF-κB-agonists/antagonists on MGPC formation are reversed, suggesting that the context and timing of signals provided by reactive microglia influence how NF-κB-signaling impacts the reprogramming of Müller glia. We propose that NF-κB-signaling is an important signaling “hub” that suppresses the reprogramming of Müller glia into proliferating MGPCs and this “hub” coordinates signals provided by reactive microglia.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3