Abstract
Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used Aplysia as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented physiological roles for PKC in synaptic plasticity in this system. In particular, we have shown that distinct isoforms mediate distinct types of synaptic plasticity induced by the same neurotransmitter: The novel calcium-independent PKC Apl II is required for actions mediated by serotonin (5-HT) alone, while the classical calcium-dependent PKC Apl I is required for actions mediated when 5-HT is coupled to activity. We will discuss the reasons for PKC isoform specificity, assess the tools used to uncover isoform specificity, and discuss the implications of isoform specificity for understanding the roles of PKC in regulating synaptic plasticity.
Publisher
Cold Spring Harbor Laboratory
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献