Mapping the Host-Pathogen Space to Link Longitudinal and Cross-sectional Biomarker Data:LeptospiraInfection in California Sea Lions (Zalophus californianus) as a Case Study

Author:

Prager K.C.ORCID,Buhnerkempe Michael G.ORCID,Greig Denise J.ORCID,Orr Anthony J.,Jensen Eric D.,Gomez Forrest,Galloway Renee L.,Wu Qingzhong,Gulland Frances M.D.,Lloyd-Smith James O.ORCID

Abstract

AbstractConfronted with the challenge of understanding population-level processes, disease ecologists and epidemiologists often simplify quantitative data into distinct physiological states (e.g. susceptible, exposed, infected, recovered). However, data defining these states often fall along a spectrum rather than into clear categories. Hence, the host-pathogen relationship is more accurately defined using quantitative data, often integrating multiple diagnostic measures, just as clinicians do to assess their patients. We use quantitative data on a bacterial infection (Leptospira interrogans) in California sea lions (Zalophus californianus) to improve both our individual-level and population-level understanding of this host-pathogen system. We create a “host-pathogen space” by mapping multiple biomarkers of infection (e.g. serum antibodies, pathogen DNA) and disease state (e.g. serum chemistry values) from 13 longitudinally sampled, severely ill individuals to visualize and characterize changes in these values through time. We describe a clear, unidirectional trajectory of disease and recovery within this host-pathogen space. Remarkably, this trajectory also captures the broad patterns in larger cross-sectional datasets of 1456 wild sea lions in all states of health. This mapping framework enables us to determine an individual’s location in their time-course since initial infection, and to visualize the full range of clinical states and antibody responses induced by pathogen exposure, including severe acute disease, chronic subclinical infection, and recovery. We identify predictive relationships between biomarkers and outcomes such as survival and pathogen shedding, and in certain cases we can impute values for missing data, thus increasing the size of the useable dataset. Mapping the host-pathogen space and using quantitative biomarker data provides more nuanced approaches for understanding and modeling disease dynamics in a system, yielding benefits for the clinician who needs to triage patients and prevent transmission, and for the disease ecologist or epidemiologist wishing to develop appropriate risk management strategies and assess health impacts on a population scale.Author SummaryA pathogen can cause a range of disease severity across different host individuals, and these presentations change over the time-course from infection to recovery. These facts complicate the work of epidemiologists and disease ecologists seeking to understand the factors governing disease spread, often working with cross-sectional data. Recognizing these facts also highlights the shortcomings of classical approaches to modeling infectious disease, which typically rely on discrete and well-defined disease states. Here we show that by analyzing multiple biomarkers of health and infection simultaneously, treating these values as quantitative rather than binary indicators, and including a modest amount of longitudinal sampling of hosts, we can create a map of the host-pathogen interaction that shows the full spectrum of disease presentations and opens doors for new insights and predictions. By accounting for individual variation and capturing changes through time since infection, this mapping framework enables more robust interpretation of cross-sectional data; e.g., to detect predictive relationships between biomarkers and key outcomes such as survival, or to assess whether observed disease is associated with the pathogen of interest. This approach can help epidemiologists, ecologists and clinicians to better study and manage the many infectious diseases that exhibit complex relationships with their hosts.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3