Eco-evolutionary dynamics in metacommunities: ecological inheritance, helping within- and harming between-species

Author:

Mullon CharlesORCID,Lehmann Laurent

Abstract

AbstractUnderstanding selection on intra- and inter-specific interactions that take place in dispersal-limited communities is a challenge for ecology and evolutionary biology. The problem is that local demographic stochasticity generates eco-evolutionary dynamics that are generally too complicated to make tractable analytical investigations. Here, we circumvent this problem by approximating the selection gradient on a quantitative trait that influences local community dynamics, assuming that such dynamics are deterministic with a stable fixed point. We nonetheless incorporate unavoidable kin selection effects arising from demographic stochasticity. Our approximation reveals that selection depends on how an individual expressing a trait-change influences: (1) its own fitness and the fitness of its current relatives; and (2) the fitness of its downstream relatives through modifications of local ecological conditions (i.e., through ecological inheritance). Mathematically, the effects of ecological inheritance on selection are captured by dispersal-limited versions of press-perturbations of community ecology. We use our approximation to investigate the evolution of helping within- and harming between-species when these behaviours influence demography. We find that individually costly helping evolves more readily when intra-specific competition is for material resources rather than for space because in this case, the costs of kin competition are paid by downstream relatives. Similarly, individually costly harming between species evolves when it alleviates downstream relatives from inter-specific competition. Beyond these examples, our approximation can help better understand the influence of ecological inheritance on a variety of eco-evolutionary dynamics in metacommunities, from consumer-resource and predator-prey coevolution to selection on mating systems with demographic feedbacks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3