Author:
Niewoehner Ole,Garcia-Doval Carmela,Rostøl Jakob T.,Berk Christian,Schwede Frank,Bigler Laurent,Hall Jonathan,Marraffini Luciano A.,Jinek Martin
Abstract
ABSTRACTIn many prokaryotes, type III CRISPR–Cas systems detect and degrade invasive genetic elements by an RNA-guided, RNA-targeting multisubunit interference complex that possesses dual RNase and DNase activities. The CRISPR-associated protein Csm6 additionally contributes to interference by functioning as a standalone ribonuclease that degrades invader RNA transcripts, but the mechanism linking invader sensing to Csm6 activity is not understood. Here we show that Csm6 proteins are activated through a second messenger generated by the type III interference complex. Upon target RNA binding by the type III interference complex, the Cas10 subunit converts ATP into a cyclic oligoadenylate product, which allosterically activates Csm6 by binding to its CARF domain. CARF domain mutations that abolish allosteric activation inhibit Csm6 activity in vivo, and mutations in the Cas10 Palm domain phenocopy loss of Csm6. Together, these results point to a hitherto unprecedented mechanism for regulation of CRISPR interference that bears striking conceptual similarity to oligoadenylate signalling in mammalian innate immunity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献