FMRFa receptor stimulated Ca2+ signals alter the activity of flight modulating central dopaminergic neurons in Drosophila melanogaster

Author:

Ravi PreethiORCID,Trivedi DeeptiORCID,Hasan Gaiti

Abstract

AbstractNeuropeptide signaling influences animal behavior by modulating neuronal activity and thus altering circuit dynamics. Insect flight is a key innate behavior that very likely requires robust neuromodulation. Cellular and molecular components that help modulate flight behavior are therefore of interest and require investigation. In a genetic RNAi screen for G-protein coupled receptors that regulate flight bout durations, we earlier identified several receptors, including the receptor for the neuropeptide FMRFa (FMRFaR). To further investigate modulation of insect flight by FMRFa we generated CRISPR-Cas9 mutants in the gene encoding the Drosophila FMRFaR. The mutants exhibit significant flight deficits with a focus in dopaminergic cells. Expression of a receptor specific RNAi in adult central dopaminergic neurons resulted in progressive loss of sustained flight. Further, genetic and cellular assays demonstrated that FMRFaR stimulates intracellular calcium signaling through the IP3R and helps maintain neuronal excitability in a subset of dopaminergic neurons for positive modulation of flight bout durations.Author summaryNeuropeptides play an important role in modulating neuronal properties such as excitability and synaptic strength and thereby influence innate behavioral outputs. In flying insects, neuromodulation of flight has been primarily attributed to monoamines. In this study, we have used the genetically amenable fruit fly, Drosophila melanogaster to identify a neuropeptide receptor that is required in adults to modulate flight behavior. We show from both knockdown and knockout studies that the neuropeptide receptor, FMRFaR, present on a few central dopaminergic neurons, modulates the duration of flight bouts. Overexpression of putative downstream molecules, the IP3R, an intracellular Ca2+-release channel, and CaMKII, a protein kinase, significantly rescue the flight deficits induced by knockdown of the FMRFaR. Our data support the idea that FMRFaR and CaMKII help maintain optimal membrane excitability of adult dopaminergic neurons required to sustain longer durations of flight bouts. We speculate that the ability to maintain longer flight bouts in natural conditions enhances the individual’s capacity to search and reach food sources as well as find sites suitable for egg laying.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3