Abstract
AbstractNeuropeptide signaling influences animal behavior by modulating neuronal activity and thus altering circuit dynamics. Insect flight is a key innate behavior that very likely requires robust neuromodulation. Cellular and molecular components that help modulate flight behavior are therefore of interest and require investigation. In a genetic RNAi screen for G-protein coupled receptors that regulate flight bout durations, we earlier identified several receptors, including the receptor for the neuropeptide FMRFa (FMRFaR). To further investigate modulation of insect flight by FMRFa we generated CRISPR-Cas9 mutants in the gene encoding the Drosophila FMRFaR. The mutants exhibit significant flight deficits with a focus in dopaminergic cells. Expression of a receptor specific RNAi in adult central dopaminergic neurons resulted in progressive loss of sustained flight. Further, genetic and cellular assays demonstrated that FMRFaR stimulates intracellular calcium signaling through the IP3R and helps maintain neuronal excitability in a subset of dopaminergic neurons for positive modulation of flight bout durations.Author summaryNeuropeptides play an important role in modulating neuronal properties such as excitability and synaptic strength and thereby influence innate behavioral outputs. In flying insects, neuromodulation of flight has been primarily attributed to monoamines. In this study, we have used the genetically amenable fruit fly, Drosophila melanogaster to identify a neuropeptide receptor that is required in adults to modulate flight behavior. We show from both knockdown and knockout studies that the neuropeptide receptor, FMRFaR, present on a few central dopaminergic neurons, modulates the duration of flight bouts. Overexpression of putative downstream molecules, the IP3R, an intracellular Ca2+-release channel, and CaMKII, a protein kinase, significantly rescue the flight deficits induced by knockdown of the FMRFaR. Our data support the idea that FMRFaR and CaMKII help maintain optimal membrane excitability of adult dopaminergic neurons required to sustain longer durations of flight bouts. We speculate that the ability to maintain longer flight bouts in natural conditions enhances the individual’s capacity to search and reach food sources as well as find sites suitable for egg laying.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献