Anti-microbial immunity is impaired in COPD patients with frequent exacerbations

Author:

Singanayagam AranORCID,Loo Su-Ling,Calderazzo Maria,Finney Lydia J,Trujillo Torralbo Maria-Belen,Bakhsoliani Eteri,Girkin Jason,Veerati Punnam,Pathinayake Prabuddha S,Nichol Kristy S,Reid Andrew,Foottit Joseph,Johnston Sebastian L,Bartlett Nathan W,Mallia Patrick

Abstract

ABSTRACTBackgroundPatients with frequent exacerbations represent a chronic obstructive pulmonary disease (COPD) sub-group requiring better treatment options. The aim of this study was to determine the innate immune mechanisms that underlie susceptibility to frequent exacerbations in COPD.MethodsWe measured sputum expression of immune mediators and bacterial loads in samples from patients with COPD at stable state and during virus-associated exacerbations. Ex vivo immune responses to rhinovirus infection in differentiated bronchial epithelial cells (BECs) sampled from patients with COPD were additionally evaluated. Patients were stratified as frequent exacerbators (≥2 exacerbations in the preceding year) or infrequent exacerbators (<2 exacerbations in the preceding year) with comparisons made between these groups.ResultsFrequent exacerbators had reduced sputum cell mRNA expression of the anti-viral immune mediators type I and III interferons and reduced interferon-stimulated gene (ISG) expression when clinically stable and during virus-associated exacerbation. RV-induction of interferon and ISGs ex vivo was also impaired in differentiated BECs from frequent exacerbators. Frequent exacerbators also had reduced sputum levels of the anti-microbial peptide mannose-binding lectin (MBL)-2 with an associated increase in sputum bacterial loads at 2 weeks following virus-associated exacerbation onset. MBL-2 levels correlated negatively with bacterial loads during exacerbation.ConclusionThese data implicate deficient airway innate immunity in the increased propensity to exacerbations observed in some patients with COPD. Therapeutic approaches to boost innate antimicrobial immunity in the lung could be a viable strategy for prevention/treatment of frequent exacerbations.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3