Stat2 loss disrupts damage signalling and is protective in acute pancreatitis

Author:

Heath Helen,Britton Gary,Kudo Hiromi,Renney George,Ward Malcolm,Hutchins Robert,Foster Graham R.,Goldin Robert,Alazawi WilliamORCID

Abstract

ABSTRACTSeverity of sterile inflammation, as seen in acute pancreatitis, is determined by damage-sensing receptors, signalling cascades and cytokine production. Stat2 is a type I interferon signalling mediator that also has interferon-independent roles in murine lipopolysaccharide-induced NF-κB-mediated sepsis. However its role in sterile inflammation is unknown. We hypothesised that Stat2 determines severity of non-infective inflammation in the pancreas.Wild type (WT) and Stat2−/− mice were injected intraperitoneally with cerulein or L-arginine. Specific cytokine-blocking antibodies were used in some experiments. Pancreata and blood were harvested 1h and 24h after the final dose of cerulein and up to 96h post L-arginine. Whole-tissue phosphoproteomic changes were assessed using label-free mass spectrometry. Tissue-specific Stat2 effects were studied in WT/Stat2−/− bone-marrow chimera and using Cre-lox recombination to delete Stat2 in pancreatic and duodenal homeobox 1(Pdx1)-expressing cells.Stat2−/− mice were protected from cerulein- and L-arginine-induced pancreatitis. Protection was independent of type I interferon signalling. Stat2−/− mice had lower cytokine levels including TNFα and IL-10 and reduced NF-kB nuclear localisation in pancreatic tissue compared to WT. Inhibition of TNFα improved (inhibition of IL-10 worsened) cerulein-induced pancreatitis in WT but not Stat2−/− mice. Phosphoproteomics showed down-regulation of mitogen-activated protein kinase (MAPK) mediators but accumulation of Ser412-phosphorylated Tak1. Stat2 deletion in Pdx1-expressing acinar cells (Stat2flox/Pdx1-cre) reduced pancreatic TNFα expression, but not histological injury or serum amylase. WT/Stat2−/− bone-marrow chimera were protected from pancreatitis irrespective of host or recipient genotype.Stat2 loss results in disrupted signalling in pancreatitis, upstream of NF-κB in non-acinar and/or bone marrow derived cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3