Quantification of inter-sample differences in T cell receptor sequences

Author:

Yokota Ryo,Kaminaga Yuki,Kobayashi Tetsuya J.

Abstract

ABSTRACTInter-sample comparisons of the T cell receptor (TCR) repertoire are crucial for gaining a better understanding into the immunological states determined by different collections of T cells from different donor sites, cell types, and genetic and pathological backgrounds. As a theoretical approach for the quantitative comparison, previous studies utilized the Poisson abundance models and the conventional methods in ecology, which focus on the abundance distribution of observed TCR sequences. However, these methods ignore the details of the measured sequences and are consequently unable to identify sub-repertoires that might have the contributions to the observed inter-sample differences. In this paper, we propose a new comparative approach based on TCR sequence information, which can estimate the low-dimensional structure by projecting the pairwise sequence dissimilarities in high-dimensional sequence space. The inter-sample differences are then quantified according to information-theoretic measures among the distributions of data estimated in the embedded space. Using an actual dataset of TCR sequences in transgenic mice that have strong restrictions on somatic recombination, we demonstrate that our proposed method can accurately identify the inter-sample hierarchical structure, which is consistent with that estimated by previous methods based on abundance or count information. Moreover, we identified the key sequences that contribute to the pairwise sample differences. Such identification of the sequences contributing to variation in immune cell repertoires may provide substantial insight for the development of new immunotherapies and vaccines.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. Systemic Lupus Erythematosus: Molecular Mimicry between Anti-dsDNA CDR3 Idiotype, Microbial and Self Peptides—As Antigens for Th Cells

2. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries

3. A survey of cross-validation procedures for model selection

4. Belkin, M. and Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. In Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic (Cambridge, MA, USA: MIT Press), NIPS’01, 585–591

5. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3