Evolutionary Analyses of RNA Editing and Amino Acid Recoding in Cephalopods

Author:

Wang Mingye (Christina),Mohlhenrich Erik

Abstract

AbstractRNA editing is a post-transcriptional modification process that alters nucleotides of mRNA and consequently the amino acids of the translated protein without changing the original DNA sequence. In human and other mammals, amino acid recoding from RNA editing is rare, and most edits are non-adaptive and provide no fitness advantage (1). However, recently it was discovered that in soft-bodied cephalopods, which are exceptionally intelligent and include squid, octopus, and cuttlefish, RNA editing is widespread and positively selected (2). To examine the effects of RNA editing on individual genes, we developed a “diversity score” system that quantitatively assesses the amount of diversity generated in each gene, incorporating combinatorial diversity and the radicalness of amino acid changes. Using this metric, we compiled a list of top 100 genes across the cephalopod species that are most diversified by RNA editing. This list of candidate genes provides directions for future research into the specific functional impact of RNA editing in terms of protein structure and cellular function on individual proteins. Additionally, considering the connection of RNA editing to the nervous system, and the exceptional intelligence of cephalopod, the candidate genes may shed light to the molecular development of behavioral complexity and intelligence. To further investigate global influences of RNA editing on the transcriptome, we investigated changes in nucleotide composition and codon usage biases in edited genes and coleoid transcriptome in general. Results show that these features indeed correlate with editing and may correspond to causes or effects of RNA editing. In addition, we characterized the unusual RNA editing in cephalopods by analyzing ratio of radical to conservative amino acid substitutions (R/C) and distribution of amino acid recoding from editing. Our results show that compared to model organisms, editing in cephalopods have significantly decreased R/C ratio and distinct distribution of amino acid substitutions that favor conservative over radical changes, indicating selection at the amino acid level and providing a potential mechanism for the evolution of widespread RNA editing in cephalopods.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3