High resolution spatio-temporal assessment of simian/human immunodeficiency virus (SHIV) evolution reveals a highly dynamic process within the host

Author:

Feder Alison F.,Kline Christopher,Polacino Patricia,Cottrell Mackenzie,Kashuba Angela D. M.,Keele Brandon F.,Hu Shiu-Lok,Petrov Dmitri A.,Pennings Pleuni S.,Ambrose Zandrea

Abstract

AbstractThe process by which drug-resistant HIV-1 arises and spreads spatially within an infected individual is poorly understood. Studies have found variable results relating how HIV-1 in the blood differs from virus sampled in tissues, offering conflicting findings about whether HIV-1 throughout the body is homogeneously distributed. However, most of these studies sample only two compartments and few have data from multiple time points. To directly measure how drug resistance spreads within a host and to assess how spatial structure impacts its emergence, we examined serial sequences from four macaques infected with RT-SHIVmne027, a simian immunodeficiency virus encoding HIV-1 reverse transcriptase (RT), and treated with RT inhibitors. Both viral DNA and RNA (vDNA and vRNA) were isolated from the blood (including plasma and peripheral blood mononuclear cells), lymph nodes, gut, and vagina at a median of four time points and RT was characterized via single-genome sequencing. The resulting sequences reveal a dynamic system in which vRNA rapidly acquires drug resistance concomitantly across compartments through multiple independent mutations. Fast migration results in the same viral genotypes present across compartments, but not so fast as to equilibrate their frequencies through time. The blood and lymph nodes were found to be compartmentalized rarely, while both the blood and lymph node were more frequently different from mucosal tissues. There is some evidence for an increase in compartmentalization after the onset of selective pressure. This study suggests that even oft-sampled blood does not fully capture the viral dynamics in other parts of the body, especially the gut where vRNA turnover was faster than the plasma and vDNA retained fewer wild-type viruses than other sampled compartments. Our findings of transient compartmentalization across multiple tissues may help explain the varied results of previous compartmentalization studies in HIV-1.Author SummaryHIV-1 is difficult to treat because the virus can evolve to become drug-resistant within the body, but we have an incomplete understanding of where drug resistant viruses originate and how they spread within a person. In this study, four macaques were infected with RT-SHIV, a simian immunodeficiency virus with an HIV-1 reverse transcriptase coding region, which can be targeted with standard HIV drugs. We sampled virus from the macaques before, during and after they became resistant to administered drugs and determined the genetic viral sequences in several parts of the body: blood, lymph nodes, gut, and vagina. We found that drug resistance emerged across compartments nearly simultaneously, and drug resistance evolved multiple independent times within each macaque. Although migration of RT-SHIV between compartments is fast, compartments do not have the same distribution of viral genotypes. This is important because although studies typically sample virus from the blood to study how HIV-1 evolution in humans, our study suggests that it is not fully representative of other parts of the body, particularly the gut.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3