Abstract
AbstractDespite the ubiquity and importance of chemical signaling, we have only limited insight about the role of learning in the response to pheromones. Here, we demonstrate that responses to pheromones can be reprogrammed through associative learning. In particular, we show that attraction to ascaroside pheromones in the model nematode Caenorhabditis elegans can be reversed by training the animals to associate either a pheromone blend or single synthetic ascarosides with the lack of food. This behavioral plasticity alters worm preference for pheromones following consumption of a food patch, possibly improving foraging in natural environments. By bridging the gap between the current knowledge on the chemical language and the learning abilities of C. elegans, we provide insight on the possible links between learning and chemical signaling in animals.
Publisher
Cold Spring Harbor Laboratory