Abstract
AbstractThere is increasing interest in developing diagnostics that discriminate individual mutagenic mechanisms in a range of applications that include identifying population specific mutagenesis and resolving distinct mutation signatures in cancer samples. Analyses for these applications assume that mutagenic mechanisms have a unique relationship with neighboring bases that allows them to be distinguished. Direct support for this assumption is limited to a small number of simple cases, e.g. CpG hypermutability. We have directly evaluated whether the mechanistic origin of a point mutation can be resolved using only sequence context for a more complicated case. We contrasted mutations originating from the multitude of mutagenic processes that normally operate in the mouse germline with those induced by the potent mutagen N-ethyl-N-nitrosourea (ENU). The considerable overlap in the mutation spectra of these two samples make this a challenging problem. Employing a new, robust log-linear modeling method, we demonstrate that neighboring bases contain information regarding point mutation direction that differs between the ENU-induced and spontaneous mutation classes. A logistic regression classifier proved to be substantially more powerful at discriminating between the different mutation classes than alternatives. Concordance between the feature set of the best classifier and information content analyses suggest our results can be generalized to other mutation classification problems. We conclude that machine learning can be used to build a practical classification tool to identify the mutation mechanism for individual genetic variants. Software implementing our approach is freely available under the BSD 3-clause license.
Publisher
Cold Spring Harbor Laboratory