Remote manipulation of magnetic nanoparticles using magnetic field gradient to promote cancer cell death

Author:

Subramanian Mahendran,Miaskowski Arkadiusz,Jenkins Stuart Iain,Lim Jenson,Dobson Jon

Abstract

AbstractThe manipulation of magnetic nanoparticles (MNPs) using an external magnetic field, has been demonstrated to be useful in various biomedical applications. Some techniques have evolved utilizing this non-invasive external stimulus but the scientific community widely adopts few, and there is an excellent potential for more novel methods. The primary focus of this study is on understanding the manipulation of MNPs by a time-varying static magnetic field and how this can be used, at different frequencies and displacement, to manipulate cellular function. Here we explore, using numerical modeling, the physical mechanism which underlies this kind of manipulation, and we discuss potential improvements which would enhance such manipulation with its use in biomedical applications, i.e., increasing the MNP response by improving the field parameters. From our observations and other related studies, we infer that such manipulation depends mostly on the magnetic field gradient, the magnetic susceptibility and size of the MNPs, the magnet array oscillating frequency, the viscosity of the medium surrounding MNPs, and the distance between the magnetic field source and the MNPs. Additionally, we demonstrate cytotoxicity in neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cells in vitro. This was induced by incubation with MNPs, followed by exposure to a magnetic field gradient, physically oscillating at various frequencies and displacement amplitudes. Even though this technique reliably produces MNP endocytosis and/or cytotoxicity, a better biophysical understanding is required to develop the mechanism used for this precision manipulation of MNPs, in vitro.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3