Abstract
AbstractDuchenne Muscular Dystrophy (DMD), a severe hereditary disease, affecting 1 boy out of 3500, mainly results from the deletion of one or more exons leading to a reading frame shift of the DMD gene that abrogates dystrophin protein synthesis. We used the Cas9 of Staphylococcus aureus (SaCas9) to edit the human DMD gene. Pairs of sgRNAs were meticulously chosen to induce a genomic deletion to not only restore the reading frame but also produced a dystrophin protein with normally phased spectrin-like repeats. The formation of a dystrophin protein with spectrin-like repeats normally phased is not usually obtained by skipping or by deletion of complete exons. This can however be obtained in rare instances where the exon/intron borders of the beginning and the end of the complete deletion (patient deletion plus CRISPR-induced deletion are at similar positions in the spectrin-like repeat. We used pairs of sgRNAs, targeting exons 47 and 58 and a normal reading frame was restored in 67 to 86% of the resulting hybrid exons in myoblasts derived from muscle biopsies of 4 DMD patients with different exon deletions. The restoration of the DMD reading frame and restoration of the dystrophin expression was also obtained in vivo in the heart of the del52hDMD/mđx. Our results provide a proof-of-principle that SaCas9 could be used to edit the human DMD gene and could be considered for the further development of a therapy for DMD.
Publisher
Cold Spring Harbor Laboratory