Convolutional models of RNA energetics

Author:

Wu Michelle J.ORCID

Abstract

AbstractNucleic acid molecular biology and synthetic biology are undergoing rapid advances with the emergence of designer riboswitches controlling living cells, CRISPR/Cas9-based genome editing, high-throughput RNA-based silencing, and reengineering of mRNA translation. Many of these efforts require the design of nucleic acid interactions, which relies on accurate models for DNA and RNA energetics. Existing models utilize nearest neighbor rules, which were parameterized through careful optical melting measurements. However, these relatively simple rules often fail to quantitatively account for the biophysical behavior of molecules even in vitro, let alone in vivo. This is due to the limited experimental throughput of optical melting experiments and the infinitely large space of possible motifs that can be formed. Here, we present a convolutional neural network architecture to model the energies of nucleic acid motifs, allowing for learning of representations of physical interactions that generalize to arbitrary unmeasured motifs. First, we used existing parameterizations of motif energies to train the model and demonstrate that our model is expressive enough to recapitulate the current model. Then, through training on optical melting datasets from the literature, we have shown that the model can accurately predict the thermodynamics of hairpins containing unmeasured motifs. This work demonstrates the utility of convolutional models for capturing the thermodynamic parameters that underlie nucleic acid interactions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3