Allergic inflammation hinders synergistic viral-bacterial co-infection in C57BL/6 mice

Author:

LeMessurier Kim S.ORCID,Iverson Amy R.,Chang Ti-Cheng,Palipane Maneesha,Vogel PeterORCID,Rosch Jason W.ORCID,Samarasinghe Amali E.ORCID

Abstract

AbstractAsthma is a chronic airways disease that can be exacerbated during respiratory infections. Our previous findings that the inflammatory state of allergic airways at the time of influenza A virus (IAV) infection in combination with epidemiologic findings that asthmatics were less likely to suffer from severe influenza during the 2009 pandemic suggest that additional complications of influenza, such as increased susceptibility to bacterial superinfection, may be mitigated in the allergic host. To test this hypothesis, we developed a murine model of ‘triple-disease’ in which mice were first rendered allergic to Aspergillus fumigatus and co-infected with IAV and Streptococcus pneumoniae seven days apart. Significant alterations to known synergistic effects of co-infection were noted in the allergic mice including reduced morbidity and mortality, bacterial burden, maintenance of alveolar macrophages, and reduced lung inflammation and damage. The lung microbiome of allergic mice differed from that of non-allergic mice during co-infection. To investigate the impact of the microbiome on the pathogenesis of lung disease, we induced a perturbation with a short course of fluoroquinolone antibiotic that is often prescribed for lung infections. A significant change in the microbiome was complemented with alterations to the inflammatory profile and a drastic increase in pro-inflammatory cytokines in allergic mice which were now susceptible to severe disease from IAV and S. pneumoniae co-infection. Our data suggest that responses to co-infection in allergic hosts likely depends on the immune and microbiome states and that antibiotics should be used with caution in individuals with underlying chronic lung disease.Author SummaryAsthma is a condition of the lungs that affects millions worldwide. Traditionally, respiratory infections are considered to have a negative impact on asthmatics. However, epidemiological data surrounding the 2009 influenza pandemic suggest that asthmatics may be better equipped to counter severe influenza including bacterial pneumonia. Herein, we introduce a novel mouse model system designed to recapitulate an influenza virus and Streptococcal co-infection in a host with fungal asthma. We found that underlying allergic asthma protects against severe disease induced by co-infection. Mice with underlying allergic inflammation had reduced damage to the lungs and did not show signs of respiratory distress. Among the differences noted in the allergic mice that were protected from viral and bacterial co-infection, was the lung microbiome. Allergic mice lost their protection from co-infection after we perturbed their lung microbiome with antibiotics suggesting that the lung microbiome plays a role in host immunity against invading pathogens.

Publisher

Cold Spring Harbor Laboratory

Reference80 articles.

1. Association AL . Estimated Prevalence and Incidence of Lung Disease by Lung Association Territory. 2014.

2. Association AL . Asthma and Children Fact Sheet [Website]. 2012 [cited 2014 06/24/2014]. Available from: http://www.lung.org/lung-disease/asthma/resources/facts-and-figures/asthma-children-fact-sheet.html.

3. CDC. Asthma in the US [Website]. 2011 [updated 05/03/2011; cited 2014 06/23/2014]. Statistics on asthma in the US]. Available from: http://www.cdc.gov/vitalsigns/asthma/.

4. Respiratory infections and asthma

5. Asthma exacerbations: Origin, effect, and prevention

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3