Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus

Author:

Leonard Ashley Sobel,Weissman Daniel,Greenbaum Benjamin,Ghedin Elodie,Koelle Katia

Abstract

AbstractThe bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from a donor to a recipient host. Accurate quantification of the bottleneck size is of particular importance for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks would limit the extent of transferred viral genetic diversity and, thus, have the potential to slow the rate of viral adaptation. Previous studies have estimated the transmission bottleneck size governing viral transmission through statistical analyses of variants identified in pathogen sequencing data. The methods used by these studies, however, did not account for variant calling thresholds and stochastic dynamics of the viral population within recipient hosts. Because these factors can skew bottleneck size estimates, we here introduce a new method for inferring transmission bottleneck sizes that explicitly takes these factors into account. We compare our method, based on beta-binomial sampling, with existing methods in the literature for their ability to recover the transmission bottleneck size of a simulated dataset. This comparison demonstrates that the beta-binomial sampling method is best able to accurately infer the simulated bottleneck size. We then apply our method to a recently published dataset of influenza A H1N1p and H3N2 infections, for which viral deep sequencing data from inferred donor-recipient transmission pairs are available. Our results indicate that transmission bottleneck sizes across transmission pairs are variable, yet that there is no significant difference in the overall bottleneck sizes inferred for H1N1p and H3N2. The mean bottleneck size for influenza virus in this study, considering all transmission pairs, was Nb = 196 (95% confidence interval 66-392) virions. While this estimate is consistent with previous bottleneck size estimates for this dataset, it is considerably higher than the bottleneck sizes estimated for influenza from other datasets.Author SummaryThe transmission bottleneck size describes the size of the pathogen population transferred from the donor to recipient host at the onset of infection and is a key factor in determining the rate at which a pathogen can adapt within a host population. Recent advances in sequencing technology have enabled the bottleneck size to be estimated from pathogen sequence data, though there is not yet a consensus on the statistical method to use. In this study, we introduce a new approach for inferring the transmission bottleneck size from sequencing data that accounts for the criteria used to identify sequence variants and stochasticity in pathogen replication dynamics. We show that the failure to account for these factors may lead to underestimation of the transmission bottleneck size. We apply this method to a previous dataset of human influenza A infections, showing that transmission is governed by a loose transmission bottleneck and that the bottleneck size is highly variable across transmission events. This work advances our understanding of the bottleneck size governing influenza infection and introduces a method for estimating the bottleneck size that can be applied to other rapidly evolving RNA viruses, such as norovirus and RSV.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3