Rapid and dynamic nucleic acid hybridization enables enzymatic oligonucleotide synthesis by cyclic reversible termination

Author:

Hoff K.ORCID,Halpain M.,Garbagnati G.,Edwards J.,Zhou W.

Abstract

AbstractEnzymatic oligonucleotide synthesis (EOS) has been attempted in many iterations for more than forty years, but chemical synthesis remains the industry standard despite hazardous waste produced, time restrictions, and length limitations of approximately 200 bases. Herein, we demonstrate that single-stranded oligos on a solid surface can transiently hybridize to neighboring strands and these structures can be recognized and extended by DNA polymerases and reverse transcriptases through a mechanism we describe as “bend and extend.” Additionally, we show that the sequence of the newly synthesized fragment can be controlled to create custom oligonucleotides. We used this enzymatic approach to synthesize 20 bases on a solid surface through a two-step cyclic reversible termination process with stepwise efficiency over 98%. In our approach, a nascent DNA strand that serves as both primer and template is extended through polymerase-controlled sequential addition of 3’-reversibly blocked nucleotides followed by subsequent cleavage of the 3’-capping group. This process enables oligonucleotide synthesis in an environment not permitted by traditional phosphoramidite methods, eliminates the need for hazardous chemicals, has the potential to provide faster and higher yield results, and synthesizes DNA on a solid support with a free 3’ end.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3