Abstract
AbstractTherian female fertility is defined by a successful and strictly periodic ovarian cycle, which is under the control of gonadotropins and steroid hormones, particularly progesterone and estrogen. The latter two are produced by the ovaries that are engaged in controlled follicular growth, maturation and release of the eggs, i.e. ovulation. It is well known that steroid hormones regulate ovarian cycles via genomic signaling, by altering gene transcription and protein synthesis. However, despite this well-studied mechanism, steroid hormones can also signal via direct, non-genomic action, by binding to their membrane receptors. Here we show, that the recently discovered sperm membrane progesterone receptor α/β hydrolase domain-containing protein 2 (ABHD2) is highly expressed in mammalian ovaries where the protein plays a novel regulatory role in follicle maturation and the sexual cycle of females. Ablation ofAbhd2caused a dysregulation of the estrous cycle rhythm with females showing shortened luteal stages while remaining in the estrus stage for a longer time. Interestingly, the ovaries ofAbhd2knockout (KO) females resemble polycystic ovary morphology with a high number of atretic antral follicles that could be rescued with injection of gonadotropins. Such a procedure also allowedAbhd2KO females to ovulate a significantly increased number of mature and fertile eggs in comparison to their wild-type littermates. These results suggest a novel regulatory role of ABHD2 as an important factor in non-genomic steroid regulation of the female reproductive cycle.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献