Scalable genomics: from raw data to aligned reads on Apache YARN

Author:

Versaci Francesco,Pireddu LucaORCID,Zanetti Gianluigi

Abstract

AbstractThe adoption of Big Data technologies can potentially boost the scalability of data-driven biology and health workflows by orders of magnitude. Consider, for instance, that technologies in the Hadoop ecosystem have been successfully used in data-driven industry to scale their processes to levels much larger than any biological- or health-driven work attempted thus far. In this work we demonstrate the scalability of a sequence alignment pipeline based on technologies from the Hadoop ecosystem – namely, Apache Flink and Hadoop MapReduce, both running on the distributed Apache YARN platform. Unlike previous work, our pipeline starts processing directly from the raw BCL data produced by Illumina sequencers. A Flink-based distributed algorithm reconstructs reads from the Illumina BCL data, and then demultiplexes them – analogously to the bcl2fastq2 program provided by Illumina. Subsequently, the BWA-MEM-based distributed aligner from the Seal project is used to perform read mapping on the YARN platform. While the standard programs by Illumina and BWA-MEM are limited to shared-memory parallelism (multi-threading), our solution is completely distributed and can scale across a large number of computing nodes. Results show excellent pipeline scalability, linear in the number of nodes. In addition, this approach automatically benefits from the robustness to hardware failure and transient cluster problems provided by the YARN pipeline, as well as the scalability of the Hadoop Distributed File System. Moreover, this YARN-based approach complements the up-and-coming version 4 of the GATK toolkit, which is based on Spark and therefore can run on YARN. Together, they can be used to form a scalable complete YARN-based variant calling pipeline for Illumina data, which will be further improved with the arrival of distributed in-memory filesystem technology such as Apache Arrow, thus removing the need to write intermediate data to disk.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3