A dynamic neural network model for predicting risk of Zika in real-time

Author:

Akhtar Mahmood,Kraemer Moritz U.G.,Gardner Lauren M.

Abstract

AbstractBackgroundIn 2015 the Zika virus spread from Brazil throughout the Americas, posing an unprecedented challenge to the public health community. During the epidemic, international public health officials lacked reliable predictions of the outbreak’s expected geographic scale and prevalence of cases, and were therefore unable to plan and allocate surveillance resources in a timely and effective manner.MethodsIn this work we present a dynamic neural network model to predict the geographic spread of outbreaks in real-time. The modeling framework is flexible in three main dimensions i) selection of the chosen risk indicator, i.e., case counts or incidence rate, ii) risk classification scheme, which defines the high risk group based on a relative or absolute threshold, and iii) prediction forecast window (one up to 12 weeks). The proposed model can be applied dynamically throughout the course of an outbreak to identify the regions expected to be at greatest risk in the future.ResultsThe model is applied to the recent Zika epidemic in the Americas at a weekly temporal resolution and country spatial resolution, using epidemiological data, passenger air travel volumes, vector habitat suitability, socioeconomic and population data for all affected countries and territories in the Americas. The model performance is quantitatively evaluated based on the predictive accuracy of the model. We show that the model can accurately predict the geographic expansion of Zika in the Americas with the overall average accuracy remaining above 85% even for prediction windows of up to 12 weeks.ConclusionsSensitivity analysis illustrated the model performance to be robust across a range of features. Critically, the model performed consistently well at various stages throughout the course of the outbreak, indicating its potential value at any time during an epidemic. The predictive capability was superior for shorter forecast windows, and geographically isolated locations that are predominantly connected via air travel. The highly flexible nature of the proposed modeling framework enables policy makers to develop and plan vector control programs and case surveillance strategies which can be tailored to a range of objectives and resource constraints.

Publisher

Cold Spring Harbor Laboratory

Reference88 articles.

1. A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy

2. Zika virus (II). Pathogenicity and physical properties

3. Zika Virus Outbreak on Yap Island, Federated States of Micronesia

4. Zika virus, French Polynesia, South Pacific;Emerg Infect Dis. 2014,2013

5. Co-infection with Zika and dengue viruses in 2 patients, New Caledonia;Emerg Infect Dis. 2015,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3