Feature-Specific Neural Reactivation during Episodic Memory

Author:

Bone Michael B.,Ahmad Fahad,Buchsbaum Bradley R.

Abstract

AbstractWhen recalling an experience of the past, many of the component features of the original episode may be, to a greater or lesser extent, reconstructed in the mind’s eye. There is strong evidence that the pattern of neural activity that occurred during an initial perceptual experience is recreated during episodic recall (neural reactivation), and that the degree of reactivation is correlated with the subjective vividness of the memory. However, while we know that reactivation occurs during episodic recall, we have lacked a way of precisely characterizing the contents—in terms of its featural constituents—of a reactivated memory. Here we present a novel approach, feature-specific informational connectivity (FSIC), that leverages hierarchical representations of image stimuli derived from a deep convolutional neural network to decode neural reactivation in fMRI data collected while participants performed an episodic recall task. We show that neural reactivation associated with low-level visual features (e.g. edges), high-level visual features (e.g. facial features), and semantic features (e.g. “terrier”) occur throughout the dorsal and ventral visual streams and extend into the frontal cortex. Moreover, we show that reactivation of both low- and high-level visual features correlate with the vividness of the memory, whereas only reactivation of low-level features correlates with recognition accuracy when the lure and target images are semantically similar. In addition to demonstrating the utility of FSIC for mapping feature-specific reactivation, these findings resolve the relative contributions of low- and high-level features to the vividness of visual memories, clarify the role of the frontal cortex during episodic recall, and challenge a strict interpretation the posterior-to-anterior visual hierarchy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3