Argonaute bypasses cellular obstacles without hindrance during target search

Author:

Cui Tao Ju,Klein Misha,Hegge Jorrit W.,Chandradoss Stanley D.,der Oost John van,Depken Martin,Joo Chirlmin

Abstract

Argonaute (Ago) proteins are key players in gene regulation in eukaryotes and host defense in prokaryotes. For specific interference, Ago relies on base pairing between small nucleic acid guides and complementary target sequences. To efficiently scan nucleic acid chains for potential targets, Ago must bypass both secondary structures in mRNA and single stranded DNA as well as protein barriers. Through single-molecule FRET, we reveal that lateral diffusion is mediated mainly through protein-nucleic acid interactions, rather than interactions between the guide and targeted strand. This allows Ago to scan for targets with high efficiency but without maintaining tight contact with the DNA backbone. Real-time observations show that Ago “glides” short distances over secondary structures while using intersegmental jumps to reduce scanning redundancy and bypass protein barriers. Our single-molecule method in combination with kinetic analysis may serve as a novel platform to study the effect of sequence on search kinetics for other nucleic acid-guided proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3