Abstract
AbstractGeobacter sulfurreducenswas originally considered a strict anaerobe. However, this bacterium was later shown to not only tolerate exposure to oxygen but also to use it as terminal electron acceptor. Research performed has so far only revealed the general ability ofG. sulfurreducensto reduce oxygen, but the oxygen uptake rate has not been quantified yet, nor has evidence been provided as to how the bacterium achieves oxygen reduction. Therefore, microaerobic growth ofG. sulfurreducenswas investigated here with better defined operating conditions as previously performed and a transcriptome analysis was performed to elucidate possible metabolic mechanisms important for oxygen reduction inG. sulfurreducens. The investigations revealed that cell growth with oxygen is possible to the same extent as with fumarate if the maximum specific oxygen uptake rate (sOUR) of 95 mgO2gCDW-1h-1is not surpassed. Hereby, the entire amount of introduced oxygen is reduced. When oxygen concentrations are too high, cell growth is completely inhibited and there is no partial oxygen consumption. Transcriptome analysis suggests a menaquinol oxidase to be the enzyme responsible for oxygen reduction. Transcriptome analysis has further revealed three different survival strategies, depending on the oxygen concentration present. When prompted with small amounts of oxygen,G. sulfurreducenswill try to escape the microaerobic area; if oxygen concentrations are higher, cells will focus on rapid and complete oxygen reduction coupled to cell growth; and ultimately cells will form protective layers if a complete reduction becomes impossible. The results presented here have important implications for understanding howG. sulfurreducenssurvives exposure to oxygen.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献