A general quantitative relation linking bacterial cell growth and the cell cycle

Author:

Zheng HaiORCID,Bai Yang,Jiang Meiling,Tokuyasu Taku A.,Huang Xiongliang,Zhong Fajun,Fu Xiongfei,Kleckner Nancy,Hwa Terence,Liu ChenliORCID

Abstract

The foundation of bacterial cell cycle studies has long resided in two interconnected dogmas between biomass growth, DNA replication, and cell division during exponential growth: the SMK growth law that relates cell mass (a measure of cell size) to growth rate1, and Donachie’s hypothesis of a growth-rate-independent initiation mass2. These dogmas have spurred many efforts to understand their molecular bases and physiological consequences3–12. Most of these studies focused on fast-growing cells, with doubling times shorter than 60 min. Here, we systematically studied the cell cycle ofE. colifor a broad range of doubling times (24 min to over 10 hr), with particular attention on steady-state growth. Surprisingly, we observed that neither dogma held across the range of growth rates examined. In their stead, a new linear relation unifying the slow- and fast-growth regimes was revealed between the cell mass and the number of cell divisions it takes to replicate and segregate a newly initiated pair of replication origins. This and other findings in this study suggest a single-cell division model, which not only reproduces the bulk relations observed but also recapitulates the adder phenomenon established recently for stochastically dividing cells13–15. These results allowed us to develop quantitative insight into the bacterial cell cycle, providing a firm new foundation for the study of bacterial growth physiology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3