Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks

Author:

Cayco-Gajic N. Alex,Clopath ClaudiaORCID,Silver R. AngusORCID

Abstract

AbstractPattern separation is a fundamental function of the brain. Divergent feedforward networks separate overlapping activity patterns by mapping them onto larger numbers of neurons, aiding learning in downstream circuits. However, the relationship between the synaptic connectivity within these circuits and their ability to separate patterns is poorly understood. To investigate this we built simplified and biologically detailed models of the cerebellar input layer and systematically varied the spatial correlation of their inputs and their synaptic connectivity. Performance was quantified by the learning speed of a classifier trained on either the mossy fiber input or granule cell output patterns. Our results establish that the extent of synaptic connectivity governs the pattern separation performance of feedforward networks by counteracting the beneficial effects of expanding coding space and threshold-mediated decorrelation. The sparse synaptic connectivity in the cerebellar input layer provides an optimal solution to this trade-off, enabling efficient pattern separation and faster learning.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3