Mutation-driven evolution of Pseudomonas aeruginosa in the presence of either ceftazidime or ceftazidime/avibactam

Author:

Sanz-García Fernando,Hernando-Amado Sara,Martínez José Luis

Abstract

ABSTRACTCeftazidime/avibactam is a combination of beta-lactam/beta-lactamases inhibitor, which use is restricted to some clinical cases including cystic fibrosis patients infected with multidrug resistant Pseudomonas aeruginosa, in which mutation is the main driver of resistance. This study aims to predict the mechanisms of mutation-driven resistance that are selected for when P. aeruginosa is challenged with either ceftazidime or ceftazidime/avibactam. For this purpose, P. aeruginosa PA14 was submitted to experimental evolution in the absence of antibiotics and in the presence of increasing concentrations of ceftazidime or ceftazidime/avibactam for 30 consecutive days. Final populations were analysed by whole-genome sequencing. All evolved populations reached similar levels of ceftazidime resistance. Besides, all of them were more susceptible to amikacin and produced pyomelanin. A first event in the evolution was the selection of large chromosomal deletions containing hmgA (involved in pyomelanin production), galU (involved in β-lactams resistance) and mexXY-oprM (involved in aminoglycoside resistance). Besides mutations in mpl and dacB that regulate β-lactamase expression, mutations related to MexAB-OprM overexpression were prevalent. Ceftazidime/avibactam challenge selected mutants in the putative efflux pump PA14_45890-45910 and in a two-component system (PA14_45870-45880), likely regulating its expression. All populations produce pyomelanin and were more susceptible to aminoglycosides likely due to the selection of large chromosomal deletions. Since pyomelanin-producing mutants, presenting similar deletions are regularly isolated from infections, the potential aminoglycosides hyper-susceptiblity and reduced β-lactams susceptibility of pyomelanin-producing P. aeruginosa should be taken into consideration for treating infections by these isolates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3