Highly accurate quantification of allelic gene expression for population and disease genetics

Author:

Saukkonen Anna,Kilpinen Helena,Hodgkinson AlanORCID

Abstract

Analysis of allele-specific gene expression (ASE) is a powerful approach for studying gene regulation, particularly when sample sizes are small, such as for rare diseases, or when studying the effects of rare genetic variation. However, detection of ASE events relies on accurate alignment of RNA sequencing reads, where challenges still remain, particularly for reads containing genetic variants or those that align to many different genomic locations. We have developed the Personalised ASE Caller (PAC), a tool that combines multiple steps to improve the quantification of allelic reads, including personalized (i.e., diploid) read alignment with improved allocation of multimapping reads. Using simulated RNA sequencing data, we show that PAC outperforms standard alignment approaches for ASE detection, reducing the number of sites with incorrect biases (>10%) by ∼80% and increasing the number of sites that can be reliably quantified by ∼3%. Applying PAC to real RNA sequencing data from 670 whole-blood samples, we show that genetic regulatory signatures inferred from ASE data more closely match those from population-based methods that are less prone to alignment biases. Finally, we use PAC to characterize cell type–specific ASE events that would be missed by standard alignment approaches, and in doing so identify disease relevant genes that may modulate their effects through the regulation of gene expression. PAC can be applied to the vast quantity of existing RNA sequencing data sets to better understand a wide array of fundamental biological and disease processes.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3