MAGOS: Discovering Subclones in Tumors Sequenced at Standard Depths

Author:

Ahmadinejad Navid,Troftgruben Shayna,Maley Carlo,Wang Junwen,Liu LiORCID

Abstract

ABSTRACTUnderstanding intratumor heterogeneity is critical to designing personalized treatments and improving clinical outcomes of cancers. Such investigations require accurate delineation of the subclonal composition of a tumor, which to date can only be reliably inferred from deep-sequencing data (>300x depth). To enable accurate subclonal discovery in tumors sequenced at standard depths (30-50x), we develop a novel computational method that incorporates an adaptive error model into statistical decomposition of mixed populations, which corrects the mean-variance dependency of sequencing data at the subclonal level. Tested on extensive computer simulations and real-world data, this new method, named model-based adaptive grouping of subclones (MAGOS), consistently outperforms existing methods on minimum sequencing depth, decomposition accuracy and computation efficiency. MAGOS supports subclone analysis using single nucleotide variants and copy number variants from one or more samples of an individual tumor. Applications of MAGOS to whole-exome sequencing data of 331 liver cancer samples discovered a significant association between subclonal diversity and patient overall survival. MAGOS is freely available as an R package at github (https://github.com/liliulab/magos).

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3