Optimal response to quorum-sensing signals varies in different host environments with different pathogen group size

Author:

Zhou Liqin,Slamti Leyla,Lereclus Didier,Raymond BenORCID

Abstract

AbstractThe persistence of genetic variation in master regulators of gene expression, such as quorum-sensing systems, is hard to explain. Here, we investigated two alternative hypotheses for the prevalence of polymorphic quorum-sensing in Gram-positive bacteria,i.e. the use of different signal / receptor pairs (‘pherotypes’) to regulate the same functions. First, social interactions between pherotypes or ‘facultative cheating’ may favour rare variants that exploit the signals of others. Second, different pherotypes may increase fitness in different environments. We evaluated these hypotheses in the invertebrate pathogenBacillus thuringiensis, using three pherotypes expressed in a common genetic background. Facultative cheating occurred in homogenized hosts, in contrast, rare pherotypes had reduced fitness in naturalistic infections. There was clear support for environment-dependent fitness: pherotypes varied in responsiveness to signals and in mean competitive fitness. Notably, competitive fitness varied with group size: the pherotype with highest responsiveness to signals performed best in smaller hosts where infections have a lower pathogen group size. Less responsive pherotypes performed best in larger hosts. Results using homogenized insect media fit with the expectation of facultative cheating and social evolution theory, but results from naturalist oral infections do not fit many of the predictions from this body of theory. In this system, low signal abundance appears to limit fitness in hosts while the optimal level of response to signals varies in different host environments.ImportanceQuorum sensing describes the ability of microbes to alter gene regulation according to their local population size. Some successful theory suggests that this is a form of cooperation: investment in shared products is only worthwhile if there are sufficient bacteria making the same product. This theory can explain the genetic diversity in these signaling systems in Gram-positive bacteria such asBacillusandStaphylococcus. The possible advantages gained by rare genotypes (which can exploit the products of their more common neighbours) could explain why different genotypes can coexist. We show that while these social interactions can occur in simple laboratory experiments they do not occur in naturalistic infections using an invertabrate pathogen,Bacillus thuringiensis. Instead our results suggest that different genotypes are adapted to different-sized hosts. Overall, social models are not easily applied to this system implying that a new explanation for this form of quorum sensing is required.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3