Reaction times and other skewed distributions: problems with the mean and the median

Author:

Rousselet Guillaume A.ORCID,Wilcox Rand R.ORCID

Abstract

ABSTRACTTo summarise skewed (asymmetric) distributions, such as reaction times, typically the mean or the median are used as measures of central tendency. Using the mean might seem surprising, given that it provides a poor measure of central tendency for skewed distributions, whereas the median provides a better indication of the location of the bulk of the observations. However, the sample median is biased: with small sample sizes, it tends to overestimate the population median. This is not the case for the mean. Based on this observation, Miller (1988) concluded that “sample medians must not be used to compare reaction times across experimental conditions when there are unequal numbers of trials in the conditions.” Here we replicate and extend Miller (1988), and demonstrate that his conclusion was ill-advised for several reasons. First, the median’s bias can be corrected using a percentile bootstrap bias correction. Second, a careful examination of the sampling distributions reveals that the sample median is median unbiased, whereas the mean is median biased when dealing with skewed distributions. That is, on average the sample mean estimates the population mean, but typically this is not the case. In addition, simulations of false and true positives in various situations show that no method dominates. Crucially, neither the mean nor the median are sufficient or even necessary to compare skewed distributions. Different questions require different methods and it would be unwise to use the mean or the median in all situations. Better tools are available to get a deeper understanding of how distributions differ: we illustrate a powerful alternative that relies on quantile estimation. All the code and data to reproduce the figures and analyses in the article are available online.

Publisher

Cold Spring Harbor Laboratory

Reference66 articles.

1. Bååth, R. (2018). beepr: Easily play notification sounds on any platform [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=beepr (R package version 1.3)

2. Analyzing reaction times;International Journal of Psychological Research,2010

3. Moving Beyond the Mean in Studies of Mental Chronometry

4. A robust and representative lower bound on object processing speed in humans;European Journal of Neuroscience,2016

5. Non-normal distributions commonly used in health, education, and social sciences: A systematic review;Frontiers in Psychology,2017

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3