A mixed quantum chemistry/machine learning approach for the fast and accurate prediction of biochemical redox potentials and its large-scale application to 315,000 redox reactions

Author:

Jinich Adrian,Sanchez-Lengeling Benjamin,Ren Haniu,Harman Rebecca,Aspuru-Guzik Alán

Abstract

AbstractA quantitative understanding of the thermodynamics of biochemical reactions is essential for accurately modeling metabolism. The group contribution method (GCM) is one of the most widely used approaches to estimating standard Gibbs energies and redox potentials of reactions for which no experimental measurements exist. Previous work has shown that quantum chemical predictions of biochemical thermodynamics are a promising approach to overcome the limitations of GCM. However, the quantum chemistry approach is significantly more expensive. Here we use a combination of quantum chemistry and machine learning to obtain a fast and accurate method for predicting the thermodynamics of biochemical redox reactions. We focus on predicting the redox potentials of carbonyl functional group reductions to alcohols and amines, two of the most ubiquitous carbon redox transformations in biology. Our method relies on semi-empirical quantum chemistry calculations calibrated with Gaussian Process (GP) regression against available experimental data. Our approach results in higher predictive power than the GCM at a low computational cost. We design and implement a network expansion algorithm that iteratively reduces and oxidizes a set of natural seed metabolites, and demonstrate the high-throughput applicability of our method by predicting the standard potentials of more than 315,000 redox reactions involving approximately 70,000 compounds. Additionally, we developed a novel fingerprint-based framework for detecting molecular environment motifs that are enriched or depleted across different regions of the redox potential landscape. We provide open access to all source code and data generated.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3