Inferring quantity and qualities of superimposed reaction rates in single molecule survival time distributions

Author:

Reisser Matthias,Hettich Johannes,Kuhn Timo,Gebhardt J. Christof M.ORCID

Abstract

Actions of molecular species, for example binding of transcription factors to chromatin, are intrinsically stochastic and may comprise several mutually exclusive pathways. Inverse Laplace transformation in principle resolves the rate constants and frequencies of superimposed reaction processes, however current approaches are challenged by single molecule fluorescence time series prone to photobleaching. Here, we present a genuine rate identification method (GRID) that infers the quantity, rates and frequencies of dissociation processes from single molecule fluorescence survival time distributions using a dense grid of possible decay rates. In particular, GRID is able to resolve broad clusters of rate constants not accessible to common models of one to three exponential decay rates. We validate GRID by simulations and apply it to the problem of in-vivo TF-DNA dissociation, which recently gained interest due to novel single molecule imaging technologies. We consider dissociation of the transcription factor CDX2 from chromatin. GRID resolves distinct, decay rates and identifies residence time classes overlooked by other methods. We confirm that such sparsely distributed decay rates are compatible with common models of TF sliding on DNA.

Publisher

Cold Spring Harbor Laboratory

Reference41 articles.

1. Practical Numerical Algorithms Why Laplace Transforms Are Difficult To Invert Numerically;Computers in Physics,1994

2. On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind;Journal of Physics A: Mathematical and General,1978

3. On the numerical inversion of the Laplace transform for nuclear magnetic resonance relaxometry;Inverse Problems,2001

4. Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods;Concepts in Magnetic Resonance Part A,2013

5. Calculation of rate spectra from noisy time series data;Proteins-Structure Function and Bioinformatics,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3