Variability in β-catenin pulse dynamics in a stochastic cell fate decision in C. elegans

Author:

Kroll Jason R.,Tsiaxiras Jasonas,van Zon Jeroen S.

Abstract

AbstractDuring development, cell fate decisions are often highly stochastic, but with the frequency of the different possible fates tightly controlled. To understand how signaling networks control the cell fate frequency of such random decisions, we studied the stochastic decision of the Caenorhabditis elegans P3.p cell to either fuse to the hypodermis or assume vulva precursor cell fate. Using time-lapse microscopy to measure the single-cell dynamics of two key inhibitors of cell fusion, the Hox gene LIN-39 and Wnt signaling through the β-catenin BAR-1, we uncovered significant variability in the dynamics of LIN-39 and BAR-1 levels. Most strikingly, we observed that BAR-1 accumulated in a single, 1-4 hour pulse at the time of the P3.p cell fate decision, with strong variability both in pulse slope and time of pulse onset. We found that the time of BAR-1 pulse onset was delayed relative to the time of cell fusion in mutants with low cell fusion frequency, linking BAR-1 pulse timing to cell fate outcome. Overall, a model emerged where animal-to-animal variability in LIN-39 levels and BAR-1 pulse dynamics biases cell fate by modulating their absolute level at the time cell fusion is induced. Our results highlight that timing of cell signaling dynamics, rather than its average level or amplitude, could play an instructive role in determining cell fate.Article summaryWe studied the stochastic decision of the Caenorhabditis elegans P3.p cell to either fuse to the hypodermis or assume vulva precursor cell fate. We uncovered significant variability in the dynamics of LIN-39/Hox and BAR-1/β-catenin levels, two key inhibitors of cell fusion. Surprisingly, we observed that BAR-1 accumulated in a 1-4 hour pulse at the time of the P3.p cell fate decision, with variable pulse slope and time of pulse onset. Our work suggests a model where animal-to-animal variability in LIN-39 levels and BAR-1 pulse dynamics biases cell fate by modulating their absolute level at the time cell fusion is induced.

Publisher

Cold Spring Harbor Laboratory

Reference77 articles.

1. The Zinc Finger Protein REF-2 Functions with the Hox Genes to Inhibit Cell Fusion in the Ventral Epidermis of C. Elegans;Development (Cambridge, England),2002

2. Bacterial Persistence as a Phenotypic Switch

3. The Caenorhabditis Elegans GATA Factor ELT-1 Works through the Cell Proliferation Regulator BRO-1 and the Fusogen EFF-1 to Maintain the Seam Stem-Like Fate;PLoS Genetics,2011

4. Plasticity and Errors of a Robust Developmental System in Different Environments

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3