Free energy based high-resolution modeling of CTCF-mediated chromatin loops for human genome

Author:

Dawson Wayne,Plewczynski DariuszORCID

Abstract

AbstractIn recent years, chromatin has been found to have considerable structural organization in the human genome with diverse parts of the chromatin interacting with each other to form what have been termed topologically associated domains (TADs). Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is a recent protein-specific method that measures these chromatin interactions via specific interactions such as CTCF-cohesin binding proteins or RNA polymerase II interactions. Unlike high-throughput chromosome conformation capture (Hi-C), which measures unspecific binding (all against all), ChIA-PET measures specific protein-protein contact interactions; hence physical bonds that reflect binding free energies. In this work, a thermodynamic method for computing the stability and dynamics of chromatin loops is proposed. The CTCF-mediated interactions, as observed in ChIA-PET experiments for human B-lymphoblastoid cells, are evaluated in terms of a chain folding polymer model and the experimentally observed frequency of contacts within the chromatin regions. To estimate the optimal free energy and a Boltzmann distribution of suboptimal structures, the approach uses dynamic programming with methods to handle degeneracy and heuristics to compute parallel and antiparallel chain stems and pseudoknots. Moreover, multiple loops mediated by CTCF protein binding that connects together more than one chain into multimeric islands are simulated using the model. Based on the thermodynamic properties of those topological three-dimensional structures, we predict the correlation between the relative activity of chromatin loop and the Boltzmann probability, or the minimum free energy, depending also on its genomic length. The results show that segments of chromatin where the structures show a more stable minimum free energy (for a given genomic distance) tend to be inactive, whereas structures that have lower stability in the minimum free energy (with the same genomic distance) tend to be active.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3