Molecular mechanism of mitochondrial phosphatidate transfer by Ups1/Mdm35

Author:

Lu Jiuwei,Chan Kevin,Yu Leiye,Fan Jun,Zhai Yujia,Sun FeiORCID

Abstract

ABSTRACTCardiolipin plays many important roles for mitochondrial physiological function and is synthesized from phosphatidic acid (PA) at inner mitochondrial membrane (IMM). PA synthesized from endoplasmic reticulum needs to transfer to IMM via outer mitochondrial membrane (OMM). The transfer of PA between IMM and OMM is mediated by Ups1/Mdm35 protein family. Although there are many structures of this family available, the detailed molecular mechanism of how PA is transferred between membranes is yet unknown. Here, we report another crystal structures of Ups1/Mdm35 in the authentic monomeric apo state and the DHPA bound state. By combining subsequent all-atom molecular dynamics simulations, extensive structural comparisons and biophysical assays, we discovered the conformational changes of Ups1/Mdm35, identified key structural elements and residues during membrane binding and PA entry. We found the monomeric Ups1 on membrane is an important transit for the success of PA transfer, and the equilibrium between monomeric Ups1 and Ups1/Mdm35 complex on membrane affects the PA transfer rate and can be regulated by many factors including environmental pH.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3